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Handout #8 
 
 
Title: Foundations of Econometrics Fall/2015 
Course: Econ 367 Instructor: Dr. I-Ming Chiu 
 
 
Linear Regression Model  
 
So far we have focused mostly on the study of a single random variable, its corresponding 
theoretical distribution, and sampling scheme. However, very often we are more interested 
in bivariate or even multivariate relationships between/among random variables. We’ll begin 
with a bivariate case where X and Y are theoretically related using coin tossing example. 
We’ll show that the “conditional mean” of Y on X can be formed using a deterministic linear 
function in X. After that we’ll introduce the simple linear regression model where Y can be 
linearly dependent on X empirically. In the study of economics, we are often interested in 
whether one variable Y can be explained by the other variable X. For example, is inflation 
caused by the over-injection of money supply in the long run? Are the households spending 
governed by their disposable income? Is employment status for a female worker dependent 
on the number of children she has? All of the above questions can be answered and 
examined using simple linear regression model.  Be noticed that the causal relationship is 
established using economic theory and empirical linear regression model is used to examine 
the validity of economic theory. Among these three examples the only difference is, in the 
third case, the Y variable is categorical. We’ll study the third case later using Probit or Logit 
model, an extension of linear regression model. As you should find out by now, the data 
type introduced in Handout#1 plays an important role to decide how we choose an 
appropriate model to study the data.  
 
*Consider an experiment where a fair coin is tossed four times; sample space  = (0, 1)4 
X = # of heads obtained on the first three tosses, Y = # of heads obtained on all four tosses 
Table 8.1 Joint Distribution 

X\Y 0 1 2 3 4 f(X) 

0   1/16   1/16 0 0 0  1/8 

1 0   3/16   3/16 0 0  3/8 

2 0 0   3/16   3/16 0  3/8 

3 0 0 0   1/16   1/16  1/8 

g(Y)   1/16  1/4  3/8  1/4   1/16  1 
 
Table 8.2 Simulation outcome based on tossing a coin four times and repeat it 100 times.  
(I did’t set the seed number, so the outcome from another experiment will be different) 
x/y 0 1 2 3 4
0 0.07 0.04 0 0 0
1 0 0.17 0.22 0 0
2 0 0 0.21 0.17 0
3 0 0 0 0.05 0.07
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What is the conditional mean function of Y given X based on the above joint distribution? 
Answer: It’s E(Y|X); expectation of Y given X. 
 
Table 8.3 Conditional Distribution 

Y 0 1 2 3 4 

g(Y|X=0)  1/2  1/2 0 0 0 

g(Y|X=1) 0  1/2  1/2 0 0 

g(Y|X=2) 0 0  1/2  1/2 0 

g(Y|X=3) 0 0 0  1/2  1/2 

E(Y|X=0) = 
2

1
 , E(Y|X=1) = 

2

3
, E(Y|X=2) = 

2

5
, E(Y|X=3) = 

2

7
 

If we plot E(Y|X) against X in a scatter diagram, it looks like the following: 
 
Figure 8.1 
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There is an “exact” (i.e., deterministic) linear relationship between E(Y|X) & X, so we can 
write the following equation: 
 
E(Y|X) = 0 + 1*X  
 
How do we find 0 and 1? 
Answer: 

1 = 
XΔ

YΔ
 =

01

)0X|Y(E)1X|Y(E




 = 1 

When X = 0  0 = E(Y|X=0) = 
2

1
   

 

E(Y|X) = 
2

1
 + X 

 
The slope and intercept of the above conditional mean function are known constants given 
that we know how X and Y are related (i.e., knowing their joint distribution function).  
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Linear Regression Model: regression analysis is concerned with the study of the 
relationship between one variable called the explained, or dependent, variable and one or 
more other variables called independent, or explanatory, variables.  
 
 Y = 0 + 1*X +  (1) 
 
Equation (1) is termed “simple” (one X) “linear” (linearity in X) regression model. Y is 
the dependent variable, X is the independent variable, and  is the error term. In practice, it’s 
unlikely the relationship between X and Y is an exact straight line like the coin tossing 
example we studied earlier. Therefore, the error term is added to represent uncertainty and 
all other potential factors that may contribute to the variation of Y (i.e., the capture-all 
effect). We will make assumptions about the error term later for inference purpose. 
 
 
Objectives of linear regression model: 

(1) To estimate the mean value of the dependent variable, given the value of the 
independent variable(s). In other words, we assume the conditional mean function is 
linear: E(Y|X) = 0 + 1*X 

(2) To test hypotheses about the nature of the dependence (i.e., 1). The size and 
magnitude of beat(s) (if there are more than one independent variables) tell us how 
the changes in Xs affect Y. This is called marginal effect. 

(3) To predict, or forecast, the mean value of the dependent variable, given the value(s) 
of the independent variable(s). 

 
 

For example, we are interested in finding the relationship between wage and schooling in a 
small market economy. If the population data is available, equation (1) is called linear 
population regression function (PRF). However, very often it is too costly to get the 
population data. Therefore, a small sample is drawn from the population and our goal is to 
uncover the unknown parameters in the linear sample regression function (SRF). Let’s use Y 
to denote the hourly wage and X education background (measured in schooling years). The 
plot of Y against X is shown in the following scatter diagram (Fig. 8.2). As you may notice 
the actual conditional mean function is not a straight line. However, a linear regression line 
seems an appropriate approximation for describing the relationship between wage and 
education. 
 
Be noticed that, one sample is obtained from a model (simulated population) where people’s 
wages are a linear function of schooling. By using a simulated data, we know all of the 
corresponding parameters in the population and the corresponding sampling scheme. There 
is an advantage of using simulated data; first, we can see how the SRF is different from the 
PRF. Secondly, we can visualize the consequences of assumption violations by changing the 
model assumption one at a time (i.e., generate a new population but with a different model 
assumption). Thirdly, we can examine the usefulness of model predictability.  
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Fig. 8.2 
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In Fig. 8.2, the sample conditional mean of wage (the blue line) tends to increase with 
schooling years. Although it’s not an exact straight line, it can be approximated using a linear 
equation (the red line) as following: 
 
E(Wage|Schooling) = 0 + 1*Schooling + , where ~N(0, 2) 
 
Where  is a deviation term that captures other factors that may affect wage. Usually we 
assume that it is normally distributed with mean zero and variance 2. This assumption is 
required for statistical inference purpose. 
 
Linear regression model: Find an “estimator” that best describes the linear relationship 
between Wage (dependent variable) and Schooling (independent variable). In other words, 
we need a method to uncover unknown parameters “0”, “1”, and “2”. 
 
There are usually two approaches to do that; MLE (maximum likelihood estimator) and OLS 
(ordinary least square). We’ll adopt the OLS estimator because it has a nice “BLUE”1 
property. I’ll give more information about this “BLUE” property later. 
 
OLS: 
 
 Yi = 0 + 1*Xi + i (i = 1…n)  (2)  
 

Choosing 0 & 1 to minimize 



n

1i

2
i10i XY )(  (3)  

 

                                                 
1 It stands for “Best Linear Unbiased Estimator”. 
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Apply differential calculus2 on equation (3), we can find 
 

 1̂  = 













n

1i

2
i

n

1i
ii

)XX(

)YY(*)XX(
  (1.1) 

 

 0̂  = Y  - 1̂ * X  (1.2) 
 

 Ŷ  = 0̂  + 1̂ *X ( Ŷ : predicted value) (1.3) 
  

 ê  = Y - Ŷ ( ê : residual; an estimator for )  (1.4) 
 
 

 2σ̂  = 
2n

ê 2
i




  (1.5) 

 iê is termed “residual” which is obtained using “Yi – ( 0̂  + 1̂ *Xi)”. 
 

 Var( 0̂ ) = 2σ̂ *(
n

1
 + 

SXX

X
2

)   (1.6)  

 Var( 1̂ ) = 2σ̂ *
SXX

1
 (1.7) 

 
Analysis of Variance (ANOVA) 
 

 (Yi - Y )2 = ( iŶ  - Y )2 +  iê 2  (1.8) 
     TSS  =          ESS      + RSS 
 

 R2 (coefficient of determination) = 
TSS

ESS
  (1.9) 

R2 = 
SYY

SXX2
1 *̂

 = 
SYY

SXX*)
SXX

SXY
( 2

 = 
SYY*SXX

)SXY( 2

 (1.10) 

 

R = 
SYYSXX

SXY
 (1.11) 

 
 

                                                 
2 We need to solve two equations simultaneously. Taking the first derivative with respect to 0 and 1 

respectively, we can obtain: -2* (Yi - 0 - 1*Xi) = 0 & -2 Xi * (Yi - 0 - 1*Xi) = 0. The above two equations 
imply that  iê = 0 &  Xi* iê = 0 

SXY 

SXX

The numerator part is called residual sum of squares; RSS. 
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Hypothesis Testing: 
a) Null vs. Alternative 
H0: 1 = * (usually the null is to examine whether 1 is zero or not (i.e., * = 0), but it can 
be other parameter rather than zero, which is specified in the economic model) 
HA: 1  0 

b) Test statistics (TS) = 
1

1








ˆ

ˆ
 ~ t n-p ( 1̂ : )ˆ( 1Var  same in (1.7), n: number of 

observations; p: number of explanatory variables need to be estimated) 
 
c) Rejection region  
It is decided by data analyst (YOU), usually 1%, 5% or 10% is chosen. It can be explained as 
the probability we allow for the Type I error. In other words, the probability we reject the 
null hypothesis when it is true. 
 
d) P-Value 
The probability to obtain a value that is as extreme as the test statistic (TS). 
 
e.g. Study time and exam score 
Time (X) 2 5 1 3 8 2 0 6 3 1 

Score (Y) 65 69 64 75 90 75 49 77 74 58 
 

Let’s compute 0̂ , 1̂ , and 2σ̂ manually and report the outcomes as follows: 

1̂  = 3.8383 (score/hour) …. the marginal score increases by 3.8383 if the study hour 
 increases by one unit. 

0̂  = 57.7013 (score) 
2σ̂ = 322.1125/(10-2) = 40.264 

 
Fig. 8.3 
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In Fig 8.3, it shows that the regression line we get will yield the smallest squared aggregate 

deviations; 



n

1i

2
i10i XY )( . In other words, the total of (-8.7012)2 + … + (1.5923)2 

will be the smallest given the OLS estimator 0̂ and 1̂ . 
 
Hypothesis Testing on 0 and 1  
Suppose we are interested in whether 1 equals certain value, say 1*. 
 
H0: 1 = 1* 
HA: 1  1* 
 
Assume the error term, , is NIID3 (0, 2)  

1̂ ~ N(1*, 2

1
 ˆ )  

 

TS = 
1

11








ˆ

ˆ
 ~ tn-2 (Why is the degree of freedom “n-2”?) 

Let’s use the numerical example from page six to examine whether 1 equals zero (does 
study time affect exam score?) In other words, we want to test 
 
H0: 1 = 0 
HA: 1   0 
 

2

1
 ˆ (= Var( 1̂ )) = 2σ̂ *

SXX

1
= 

9.56

264.40
 = 0.7076 

 
2σ̂  = 40.264 

SXX = 56.9 
 

TS = 
7076.0

08383.3 
 = 4.56 (table value, t8 = 2.306 at 5% level of significance) 

 
The above TS indicates that we can not reject the null hypothesis at 5% (or even 1%) level 
of significance using two-tail test. 
 
Alternatively, we can calculate the p-value to decide whether we can reject the null. A p-
value is a measure of how much evidence we have against the null hypothesis. I’ll 
show you how to calculate p-value using Stata. The p-value for TS = 4.56 with 8 df is about 
9.2*10-4 
 

                                                 
3 “Normally”, “Identically”, “Independently”, “Distributed”.  The common assumptions about the error tem 
are a) E(|X) = 0, b)E(2|X) = 2. Meaning, the error tem has a mean equals zero and it is “homoscedastic” 
(i.e., constant variance). 
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What can we conclude in our numerical example? 
If students study one more hour, his (her) exam score will be 3.8383 “significantly” higher. 
 
The Analysis of Variance (Again; you should see the pattern when F test is needed) 

Let’s consider the conditional mean of Y: Ŷ = 0̂  + 1̂ *X 
 

Yi = iŶ  + iê   Yi - Y = ( iŶ  - Y ) + iê  

(Yi - Y )2 = ( iŶ  - Y )2 +  iê 2  (1.8) 
    TSS4   =  ESS    +  RSS 

ESS = ( iŶ  - Y )2 =  ( 0̂  + 1̂ *Xi - ( 0̂  + 1̂ * X ))2 = 2
1̂ * (Xi - X )2  

R2 (coefficient of determination) = 
TSS

ESS
  (1.9) 

 
 
We will apply equation (1.8) and (1.9) using matrix operations in Stata to obtain coefficient 
of determination in the next session. 
 
Table 1 ANOVA 
 
 Source df SS MS F p-value 
--------------------------------------------------------------------------------------------------------- 

 Regression 1 SSreg SSreg/1 MSreg5/ 2σ̂  

 Residual n-2 RSS 2σ̂ =RSS/n-2 
---------------------------------------------------------------------------------------------------------- 
 Total n-1 SYY 
------------------------------------------ 
 Notice: t2 = F (see pp. 6, Handout #6)  
 
 
The Residuals 
The residuals can be used for “diagnostic check”. This examines whether the model 
assumptions are violated. Knowing whether the assumptions are violated affects the 
hypothesis testing results. In the next handout we will show that how to “modify” OLS 
estimator given that we detect either “multicollinearity”, “heteroscedascity”, and/or 
“autocorrelation” problems.  
 
Predictions 

Ŷ  = 0̂  + 1̂ * X  

Where “ X ” is a chosen value (vector). For example, given “certain study time, X ” what 

should be the expected exam score ( Ŷ )?  

                                                 
4 Denote this term by SYY. 
5 SSreg/1 = MSreg. 
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Standard error of prediction = σ̂ *(1 + 
n

1
 + 2/1

2

)
SXX

)XX(   

Standard error of prediction in matrix form = { 2σ̂ *[1 + X T(XTX)-1
X ]}1/2  

 
 
 
Linear Regression Model using Matrix Operations 
 
ALTERNATIVELY, we can write equation (1) on page 3 into a matrix form as following: 
 
 Y = X* +   (2.1) 
 
Where Y is a nx1 matrix, X is a nx2 matrix and  is a 2x1 vector. Let’s ignore “” 
temporarily. 
 

 Y = 































n

2

1

y

y

y

, X = 































n

2

1

x1

x1

x1

,  = 










1

0 . 

 
Applying matrix differentiation according to equation (3)6 on page 4, we can obtain   
 

 φ̂  = 











1

0

ˆ

ˆ
 = (XTX)-1(XTY) (2.2)7   

 
 
 
 
 
 
 
 
 
 
 

                                                 
6 In matrix form eq. (3) is equivalent to select both beta estimators to minimize T. 
7 The derivation of equation (2.2) is same as the one I show in footnote 2 on page 5. I will briefly explain 
matrix differentiation in our meeting. As you can see (2.2) is a generalization of obtaining beta estimators. In 
other words, it can be applied easily to linear multiple (i.e., more than one regressors) regression model. 

Projection (blue arrow) of Y 
on (1, X) vector space 

1

X

YFig. 8.4 

1̂ *X 

0̂ *1 

Ŷ  

ê  
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What does Fig. 8.4 mean mathematically? 

 































n

2

1

y

y

y

ˆ

ˆ

ˆ

= 0̂ *































1

1

1

 + 1̂ *































n

2

1

x

x

x

  

 
(We want to assign a “weight” to 1 and X vector and thus results in a value (distance) that is 
closet to Y vector). 
 
 
Small Sample Property of OLS Estimator 
Estimated 0 and 1 
 

 E( 











1

0

ˆ

ˆ
) = 











1

0 … OLS estimator is unbiased (2.3) 

 Var( 











1

0

ˆ

ˆ
) has the smallest variance among all the linear (2.4) 

 estimators … OLS estimator is efficient. 
 
Estimated Variances of 0 and 1 

Var( φ̂ )8 = 










)ˆ()ˆ,ˆ(

)ˆ,ˆ()ˆ(

110

100

VarCov

CovVar
 = 2σ̂ *(XTX)-1 = 2σ̂ *( 











2
ii

i

XX

Xn
)-1 

 
 

= 2σ̂ *
  2

i
2

i )X(X*n

1
*


















nX

XX

i

i
2

i   (2.5)9 

 
------------------------- 

SXX = 2
i )XX(   = )XX*X2X(

2
i

2
i   =  2

iX  - 2* X * iX  + 
2

X  

=  2
iX  - 2*

n

X i * iX  + n*
2

X  =   2
iX  - 2*

n

)X( 2
i + n*(

n

X i )2  

                                                 
8 Var() = 2(XTX)-1; 2 needs to be estimated since it’s unknown. The estimator is 2̂ . 
9 This variance-covariance matrix is the most important estimator for statistical inference purpose. 
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=  2
iX  - 2*

n

)X( 2
i + 

n

)X( 2
i  =  2

iX  - 
n

)X( 2
i  

------------------------ 
Let’s focus on the estimated variance of s: 
 

Var( 0̂ ) = 2σ̂ *
 


 2

i
2

i

2
i

)X(X*n

X
 = 2σ̂ *

SXX*n

n/)X(SXX 2
i

 = 2σ̂ *
SXX*n

X*nSXX
2


 

= 2σ̂ *(
n
1

 + 
SXX
X

2

)  (2.6) 

 

Var( 1̂ ) = 2σ̂ *
  2

i
2

i )X(X*n

n
 = 2σ̂ *

  n/)X(X

1
2

i
2

i

 = 2σ̂ *
SXX

1
 (2.7) 

Cov( 0̂ , 1̂ ) = 2σ̂ *
 





2

i
2

i

i

)X(X*n

X
 = - 2σ̂ *

 

 n/)X(X

n/X
2

i
2

i

i  = - 2σ̂ *
SXX

X
 (2.8) 

How do we find the estimate of correlation coefficient between 0 & 1 (i.e., ( 0̂ , 1̂ ))?  
 
 
From here, all the routines and concepts are the same as I show earlier. We rely on 
mainly two equations to get the job done. Please go over the Mata routine at least 
once to learn how we obtain all the important outcomes in a linear regression model. 
 

In general if we have p regressors, then φ̂  = [ ]ˆ,ˆ,...,ˆ,ˆ
p1p10  

T 

 
φ̂  = (XTX)-1(XTY) 
  
 

Var( φ̂ ) = 2σ̂ *(XTX)-1 
 
 
 
 
 
 
 


