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Abstract This paper studies a financial market transaction model and convergence

of Markovian price processes generated by an a-double auction in Xu et al. (Expert

Syst Appl 41(16):7032–7045, 2014) and extends their results for a fixed a in [0, 1]

to the case where a is governed by a time non-homogeneous Markov chain over a

set of finite states defined by R � fa1; a2; . . .; arg, 0� a1\a2\ � � �\ar � 1. A

convergence result similar to that in Xu et al. (2014) holds, with the fixed a replaced
with the average a� ¼ 1

r

Pr
h¼1 ah. We also identify the conditions under which a

price process generated by such a Markovian a-double auction converges in prob-

ability to a Walrasian equilibrium of the underlying financial market transaction

model. A number of simulations are conducted and these simulations are consistent

with the theoretical results of the paper.
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1 Introduction

In a large class of quasilinear economies, price adjustment processes generated by

the subgradient method (under the Walrasian hypothesis via Fenchel’s duality

theorem) (e.g., Bertsekas and Tsitsiklis 2000) converge to a Walrasian equilibrium

when the step size is diminishing (see footnote 2 for definition). Because the

adjustment in prices under the Walrasian hypothesis depends on the total demand

and supply of the economy, such a price process is a centralized system that has a

limited use for a large scale economy where information on the total demand and

supply is costly obtained. In contrast, the incremental subgradient method,

originally proposed in Kibardin (1980), is a decentralized system that uses only

the information on individual’s demand and supply. For example, in a cyclic

incremental subgradient method (e.g., Nedić and Bertsekas 2001, and see Bertsekas

2010 for a survey), agents form a ring or cyclic structure and prices are iterated

along the ring, one agent at a time. That is, only one agent’s demand and supply (at

the prices that are newly updated along the ring) feeds into the price process at each

iteration. It is not necessary to have the same ring structure for a price process but

the ring structure must stay put until the price process has incorporated all

individual’s demand and supply along the same ring. Such a decentralized system is

useful to study the convergence of price processes for a large scale economy

because there is no need to obtain information about the total demand and supply.

More importantly, under the same diminishing step size rule, a price process

generated under the cyclic incremental subgradient method always converges to a

Walrasian equilibrium of the underlying economy, as shown in Nedić and Bertsekas

(2001). Such a convergence result in Nedić and Bertsekas (2001) can be shown for

the randomized incremental subgradient method, where each agent is randomly

drawn, with equal probability. It can also be extended to the case when all agents

form a Markovian network specified in Ram et al. (2009) (see Assumption 3.1 in

Sect. 3 for detail).

This paper studies a financial market transaction model given by a general form

below (Bertsekas 2010):

P minimizey2Y FðyÞ �
Xm

i¼1

fiðyÞ þ
Xn

j¼1

gjðyÞ:

For all sellers i 2 I ¼ f1; 2; . . .;mg and buyers j 2 J ¼ f1; 2; . . .; ng, fi: Rd ! R and

gj: R
d ! R are real-valued (possibly non-differentiable) convex functions and Y is a

nonempty convex subset of Rd. For a large class of quasilinear economies for selling

a single divisible good, fiðyÞ is the producer’s surplus for seller i at price y and gjðyÞ
is the consumer’s surplus for buyer j at price y; the gradient 5fiðyÞ is the quantity

supplied for seller i at price y and the gradient �5 gjðyÞ is the quantity demanded

for buyer j at price y; and a price y is Walrasian if and only if y is a solution to

problem P (Ma and Nie 2003). These observations can be extended to an exchange

economy for (multiple) indivisible goods in Bikhchandani and Mamer (1997),

typified by the well-known job matching model of Kelso and Crawford (1982),

when the duality gap is zero. With the gross substitutes preferences in Kelso and
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Crawford (1982), a solution y to problem P is also a Walrasian equilibrium for such

an exchange economy with (multiple) indivisible goods. For an exchange economy

in Bikhchandani and Mamer (1997), the problem P is exactly the dual problem of a

linear programming that finds an efficient allocation; and Bikhchandani and Mamer

(1997) show that a Walrasian equilibrium exists if and only if the duality gap is zero

(also see Ma and Nie 2003; Ma and Li 2011).

We are interested in the convergence of the price processes generated by a double

auction in Ma and Li (2011) in an economy that has a dual P specified above. The

two double auctions in Ma and Li (2011) specify two different ways how the two

sequences of bid and ask orders enter a price process, largely motivated by the

literature of the incremental subgradient methods, e.g., Kibardin (1980), Nedić and

Bertsekas 2001), and Ram et al. (2009). A double auction in Ma and Li (2011) has a

two ring structure, one ring for the sellers (generating a sequence of asks) and one

ring for the buyers (generating a sequence of bids). At each iteration, the sequence

of asks is updated by incorporating individual seller’s supply information along the

sellers’ ring and the sequence of bids is updated by incorporating individual buyer’s

demand information along the buyers’ ring, one pair at each moment of time. The

price process is formed as a weighted average of a pair of ask and bid, with a weight

a 2 ½0; 1�, similar to a double auction in a real exchange market. An important

feature of such a double auction, different from that in the cyclic incremental

subgradient method, is that sellers and buyers can have different step sizes or step

size rules. This feature has been captured by a parameter k in a condition related to

the two different step sizes (see the inequality (7.2) about the k below). The weight

a and the parameter k play an important role for the convergence of price processes

generated by a double auction (Ma and Li 2011; Xu et al. 2014). Our main

convergence result in Theorem 7.1 reaches the same conclusion.

The rest paper is organized as follows. Section 2 introduces Markovian price

processes nontechnically. Section 3 defines the Markovian chain and a key

assumption on the transition probability matrices. Section 4 introduces the model

and an example how the model is related to an exchange economy. Section 5

defines a Markovian a-double auction formally. Section 6 provides a simple

example and reports some simulation results. Section 7 proves the main theorem,

which covers two cases: one with noises and the other without noises. Section 8

provides some remarks and additional experiments. Section 9 concludes.

2 Markovian price processes

We now introduce in more detail the Markovian price processes studied in this

paper. Some technical details are introduced in Sects. 3–5. In a stock exchange

market, a bid (an ask) order for a stock at each moment consists of a pair of a bid

and a bid size (an ask and an ask size). A bid order indicates the buyer, by

submitting his bid order, is willing to buy a number of shares no greater than the

quantity of the bid size at a unit share price no greater than the bid; and an ask order

indicates the seller, by submitting her ask order, is willing to sell a number of shares

no greater than the ask size at a unit share price no less than the ask. Therefore, a

Convergence of Markovian price processes in a financial…
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trade is only possible at each moment of time between a bid order and an ask order

and only executed if the bid is at least as high as the ask. Because the bid is no less

than the ask of an executed trade, the share price of a trade is often settled in the

interval of [ask, bid]. The price rule implemented in such a manner in a

clearinghouse is called an a-double auction. That is, the price that is settled equals a

weighted average of the bid and the ask for some weight a 2 ½0; 1�. Specifically, if
we use xkþ1, wkþ1 and ukþ1 to denote the executed price, the ask and the bid at time

k þ 1, respectively, with the bid no less than the ask, then the price xkþ1 of the

executed trade is determined by

xkþ1 ¼ akþ1wkþ1 þ ð1� akþ1Þukþ1; akþ1 2 ½0; 1�: ð2:1Þ

Such an a-double auction1 has been studied in Chatterjee and Samuelson (1983),

Myerson and Satterthwaite 1983), and Wilson (1985) in theory for selling a single

unit of an indivisible object for a fixed a 2 ½0; 1� in a strategic form game with

incomplete information. In practice, however, an a-double auction is dynamic, with

a time-varying a, and the number of shares in each trade often involves more than a

single unit.

Figure 1 provides an illustration how a may evolve with time with five different

states of as, 0� a1\a2\ � � �\a5 � 1. The transition probability matrix PRðkÞ over
the states in Fig. 1 at time k may be given by

PRðkÞ ¼

3=5 1=5 0 0 1=5

1=5 1=5 3=5 0 0

0 3=5 1=5 1=5 0

0 0 1=5 2=5 2=5

1=5 0 0 2=5 2=5

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

As in Ram et al. (2009), these transition probability matrices are doubly stochastic

and depend on time k, k ¼ 0; 1; 2; . . .; in our general convergence results. The

networks in Fig. 1 may also evolve across time in the sense that some links among

these as may drop off or be added occasionally as the auction proceeds.

Next we specify how the ask wkþ1 and the bid ukþ1 in (2.1) are associated with

the ask and bid sizes. Let xk be the price of a stock at time k, the bid size at time

k þ 1 of the bid order is the quantity demanded at xk for the buyer and the ask size of

the ask order at time k þ 1 is the quantity supplied at xk for the seller. We also allow

the buyer and the seller to submit bid and ask sizes that are contaminated by noises,

1 This is the same as the k-double auction but k has been reserved to denote iterations in this paper.

α1 α2 α3

1/5

α4 α5
1/5 3/5 1/5 2/5

Fig. 1 An example of Markovian a and transition probabilities
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which capture the idea that the buyer and the seller may not know precisely their

true demand and supply. That is, the buyer and the seller know their demand and

supply, but with some uncertainty, which is reflected into their bid size and ask size

with a noise term. The bid ukþ1 and the ask wkþ1 follow the equations

wkþ1 ¼ xk � ak � ask size; ukþ1 ¼ xk þ bk � bid size; ð2:2Þ

where ak and bk are the ask and bid step sizes at k, respectively. The ask step size ak
is the price decrement of one share for the seller and the bid step size bk is the price

increment for one share for the buyer. In a Markovian a-double auction of this

study, these step sizes are time-varying and diminishing.2 Note however, that bid

and ask step sizes are not the same as the bid and ask spread ukþ1 � wkþ1.

Our major concern is that, under what conditions on fakg and fbkg, the

Markovian price process defined in (2.1) and (2.2) converges. Moreover, we address

the question as to how the convergence is related to the Walrasian equilibrium of the

underlying exchange economy defined by P, when as evolve in a time non-

homogeneous Markov chain, similar to the one shown in Fig. 1.

To answer the question, we have to consider the following alternative problem

Pða; kÞ minimizey2Y Fðy; a; kÞ � a
Xm

i¼1

fiðyÞ þ kð1� aÞ
Xn

j¼1

gjðyÞ;

where k is a positive scalar. Let Y�ða; kÞ denote the set of solutions to Pða; kÞ. Note
that Y�ða; kÞ is also the set of solutions to P for a ¼ kð1� aÞ. For other values with
inequality a 6¼ kð1� aÞ, the two solution sets may differ. For a given a, Ma and Li

(2011) identified two a-double auctions that generate a price process in (2.1) and

(2.2) that converges to a solution in Y�ða; kÞ if the following holds

X1

k¼0

1

n
bk � k

1

m
ak

�
�
�
�

�
�
�
�\þ1

for some positive scalar k. It is easier to understand what is this parameter k by

assuming that the limit of the step size ratio lim bk
ak
exists. Then the unique k must be

equal to m
n
lim bk

ak
; see Ma and Li (2011) for detail. Thus, this parameter k reflects the

aggressiveness in the way how buyers and sellers place their bid and ask orders (for

one share) in the limit. The number n of buyers and the number m of sellers also

matter. But k is not related to fi and gj. Such a feature is important because fi and gj
are privately known to sellers and buyers, respectively, not known to the mechanism

designer. Nonetheless, without knowing any information about fi and gj, the two

parameters a and k can determine if the price process in (2.1) and (2.2) converges to

a solution to P.
Xu et al. (2014) extends the convergence results in Ma and Li (2011) to the case

where sellers and buyers form two time non-homogeneous Markov chains, one for

the sellers and the other for the buyers, in a style of forming local interactive

2 (1) ak [ 0 and bk [ 0; (2)
P1

k¼0 ak ¼ þ1 and
P1

k¼0 bk ¼ þ1; (3)
P1

k¼0 a
2
k\þ1 and

P1
k¼0 b

2
k\þ1. See Nedić and Bertsekas (2001) and Ram et al. (2009).
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networks in Ellison (1993) and Ram et al. (2009). Nevertheless, the weight a in Xu

et al. (2014) remains a constant in [0, 1]. Because the clearinghouse in an exchange

in practice often executes trades with various a 2 ½0; 1�, most of the times, near the

two end values 0 and 1, the current paper extends the results in Xu et al. (2014) to

the case when a is time-varying. For a set of states defined by R � fa1; a2; . . .; arg,
0� a1\a2\ � � �\ar � 1, define a� ¼ 1

r

Pr
h¼1 ah. With the doubly stochastic

transition probability matrix on R, as the one specified in Ram et al. (2009), we

prove that a convergence result similar to those in Xu et al. (2014) holds, with a in

Xu et al. (2014) replaced by this new a�. Our results show that a Markovian a-
double auction converges to the set of Walrasian equilibrium prices of the original

economy if, in addition, the condition a� ¼ kð1� a�Þ holds. However, if the

condition a� ¼ kð1� a�Þ does not hold, a Markovian a-double auction may

converge to a price vector that is above or below a Walrasian equilibrium, which

implies that there may exist a bubble (above the fundamental value) or a crash

(below the fundamental value) for some goods. We provide simulations for a bubble

and a crash with different a� in Fig. 4a, b in Sect. 8. More experimental results

about bubbles and crashes are founded in Tables 1 and 2 of Sect. 8.5.

3 Markov chains

We need to be precise about the way how bid and ask orders are cleared and enter the

price of a stock in (2.1) and (2.2). We assume that sellers in I and buyers in J are

connected in two time-varying networks, as in Xu et al. (2014), motivated largely by

Ellison (1993) and Ram et al. (2009). Some links in the two networks may be lost or

added over time occasionally.We followRamet al. (2009) tomodel these two networks

Table 1 Experimental results for m ¼ 5 and n ¼ 5; 10; 20

m ¼ 5

n ¼ 5

m ¼ 5

n ¼ 10

m ¼ 5

n ¼ 20

Y� 1.0000 1.0000 1.8028 1.8028 1.8028 1.8028 3.3912 3.3912 3.3912 3.3912

a� 1
2

1
2

1
2

1
2

2
3

2
3

1
2

1
2

2:2
3

2:2
3

Y�ða�; 1Þ 1.0000 1.0000 1.8028 1.8028 1.2748 1.2748 3.3912 3.3912 2.0449 2.0449

Noises No (0, 25) No (0, 25) No (0, 25) No (0, 25) No (0, 25)

Mean �l 1.0000 1.0012 1.8039 1.8101 1.2795 1.2732 3.4046 3.4286 2.0462 2.0572

SD �r 0.0016 0.0018 0.0022 0.0015 0.0036 0.0023 0.0054 0.0052 0.0093 0.0065

�l� 1:96�r 0.9968 0.9977 1.7995 1.8071 1.2726 1.2688 3.3940 3.4184 2.0281 2.0445

�lþ 1:96�r 1.0032 1.0047 1.8083 1.8131 1.2865 1.2776 3.4153 3.4389 2.0644 2.0700

k ¼ 1, ak ¼ 1
kþ1

and bk ¼ kn
m
ak

Y� is the equilibrium price of the original economy. The price process fxkg converges to Y�ða�; 1Þ with
probability 1, according to Theorem 7.1. Weight in a�, higher than 1

2
, results in a price that is lower than

the equilibrium price Y�. In each experiment, we have conducted 100 rounds, with x0 generated uniformly

from [1, 5], and each round has 20,000 iterations. The mean �l and the standard deviation �r of fxkg for

each experiment are derived from the average sample of 100 rounds for iterations from k ¼ 10;000 to

k ¼ 20;000

X. Xu et al.
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as two time non-homogeneousMarkovian chains. An example of an economywith five

buyers, J ¼ f1; 2; . . .; 5g, and three sellers, I ¼ f1; 2; 3g, is given in Fig. 2.

Thus, for each network at time k, there are two transition probability matrices

PIðkÞ and PJðkÞ over the states I and J, i.e.,

½PIðkÞ�i;i0 ¼ Probfsðk þ 1Þ ¼ i0jsðkÞ ¼ ig 8i; i0 2 I ¼ f1; 2; . . .;mg

and

½PJðkÞ�j;j0 ¼ Probfsðk þ 1Þ ¼ j0jsðkÞ ¼ jg 8j; j0 2 J ¼ f1; 2; . . .; ng:

The following assumption is given in Ram et al. (2009) and plays an important

role to our results.

Assumption 3.1 (a) All diagonal entries of PIðkÞ and PJðkÞ are all positive for

each k; (b) all positive entries in PIðkÞ and PJðkÞ are uniformly bounded away from

zero, i.e., there exist constants gI [ 0 and gJ [ 0 such that ½PIðkÞ�i;i0 � gI whenever
½PIðkÞ�i;i0 [ 0 and ½PJðkÞ�j;j0 � gJ whenever ½PJðkÞ�j;j0 [ 0; (c) the two matrices PIðkÞ

Table 2 Experimental results for n ¼ 5 and m ¼ 5; 10; 20

n ¼ 5

m ¼ 5

n ¼ 5

m ¼ 10

n ¼ 5

m ¼ 20

Y� 1.0000 1.0000 0.5547 0.5547 0.5547 0.5547 0.2949 0.2949 0.2949 0.2949

a� 1
2

1
2

1
2

1
2

1
3

1
3

1
2

1
2

1
5

1
5

Y�ða�; 1Þ 1.0000 1.0000 0.5547 0.5547 0.7845 0.7845 0.2949 0.2949 0.5898 0.5898

Noises No (0, 25) No (0, 25) No (0, 25) No (0, 25) No (0, 25)

Mean �l 1.0000 1.0012 0.5582 0.5587 0.7897 0.7913 0.3179 0.3167 0.6235 0.6371

SD �r 0.0016 0.0018 0.0040 0.0026 0.0023 0.0025 0.0080 0.0065 0.0047 0.0177

�l� 1:96�r 0.9968 0.9977 0.5504 0.5537 0.7851 0.7865 0.3021 0.3039 0.6144 0.6024

�lþ 1:96�r 1.0032 1.0047 0.5660 0.5637 0.7943 0.7962 0.3336 0.3295 0.6327 0.6717

k ¼ 1, ak ¼ 1
kþ1

and bk ¼ kn
m
ak

Y� is the equilibrium price of the original economy. The price process fxkg converges to Y�ða�; 1Þ with
probability 1, according to Theorem 7.1. Weight in a�, lower than 1

2
, results in a price that is higher than

the equilibrium price Y�. In each experiment, we have conducted 100 rounds, with x0 generated uniformly

from [1, 5], and each round has 20,000 iterations. The mean �l and the standard deviation �r of fxkg for

each experiment are derived from the average sample of 100 rounds for iterations from k ¼ 10;000 to

k ¼ 20;000

J :
1 2 3

1/5

4 5
1/5 1/5 1/5 1/5

I :
1 2 3

1/3 1/3

Fig. 2 Markovian networks of J and I and their transition probabilities
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and PJðkÞ are both doubly stochastic for each k, i.e., the sum of entries in every row

and every column of the two matrices is equal to one.

For ah 2 ½0; 1�; h ¼ 1; 2; . . .; r, at time k, there is a transition probability matrix

PRðkÞ over the states R ¼ fa1; a2; . . .; arg. Because ah, h ¼ 1; 2; . . .; r, are fixed, we
also use R ¼ f1; 2; . . .; rg for notation convenience where h 2 R is used as a

substitute for ah, i.e.,

½PRðkÞ�h;h0 ¼ Probfsðk þ 1Þ ¼ h0jsðkÞ ¼ hg 8h; h0 2 R ¼ f1; 2; . . .; rg:

We assume that the transition probability matrix PRðkÞ satisfies the same assump-

tion as in Assumption 3.1. Thus, the network linking all as in R evolves across time.

Let UIðk; ‘Þ ¼ Pk�1
q¼‘PIðqÞ, UJðk; ‘Þ ¼ Pk�1

q¼‘PJðqÞ, and URðk; ‘Þ ¼ Pk�1
q¼‘PRðqÞ,

with k[ ‘, denote the three corresponding transition probability matrices for the

Markov chains from time ‘ to k. Then, the convergence results for them under

Assumption 3.1 are given by (Lemma 4.1 in Ram et al. 2009),

½UIðk; ‘Þ�i;j �
1

m

�
�
�
�

�
�
�
�� bIb

k�‘
I ; for all k and ‘ with k� ‘� 0 ð3:1Þ

½UJðk; ‘Þ�i;j �
1

n

�
�
�
�

�
�
�
�� bJb

k�‘
J ; for all k and ‘ with k� ‘� 0; ð3:2Þ

½URðk; ‘Þ�i;j �
1

r

�
�
�
�

�
�
�
�� bRb

k�‘
R ; for all k and ‘ with k� ‘� 0; ð3:3Þ

where

bI ¼ 1� gI
2m2

� ��2

; bI ¼ 1� gI
2m2

� � 1
QI ;

bJ ¼ 1� gJ
2n2

� ��2

; bJ ¼ 1� gJ
2n2

� � 1
QJ ;

bR ¼ 1� gR
2r2

� ��2

; bR ¼ 1� gR
2r2

� � 1
QR ;

where QI � 1, QJ � 1, and QR � 1 are some integers defined as follows. As in Ram

et al. (2009), let VI ¼ f1; 2; . . .;mg be the set of vertices for the seller network.

There is an edge in the seller network EIðkÞ between sellers i1 and i2 at time k if and

only if ½PðkÞ�i1;i2 [ 0. There exists an integer QI � 1 such that the graph

ðVI ;[kþQI�1
l¼k EIðlÞÞ is strongly connected for all k. One can similarly define QJ and

QR. The existence of QI or QJ guarantees that an agent in I or J has a chance, within

a finite number of price iterations, of getting into the price iteration process so that

her private information will be reflected in fxkg. Likewise, QR guarantees that each

a in R will be eventually used in the iteration process of the auction.

Assumptions 3.1(a), (b) imply that each diagonal entry is uniformly bounded

away from zero and one; and any positive non-diagonal entry is uniformly bounded

from zero. Doubly stochastic assumption of Assumption 3.1(c) is important and

somehow restrictive.
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123

Author's personal copy



Under Assumption 3.1, Eq. (3.1) shows that the transition matrix UIðk; lÞ from l

to k can be approximated by a matrix with each entry that equals 1
m
; The error of

such an approximation is bounded by bIb
k�‘
I . Equations (3.2) and (3.3) can be

explained similarly.

4 Subgradients

Given a convex function u: Rd ! R, a vector 5u 2 Rd is a subgradient of u at

y 2 Rd if uðzÞ�uðyÞ þ h5u; z� yi for all z 2 Rd. The set of all subgradients of a

convex function is called the subdifferential of u at y, denoted ouðyÞ. For a convex
function u, the subdifferential ouðyÞ is a nonempty, compact, and convex set for

every y 2 Rd (see Clarke et al. 1988; Bertsekas 2009). Moreover, [y2YouðyÞ is

bounded for a bounded set Y (Bertsekas 2009, p. 185).

For any two regular functions u and w at y, the sum uþ w is regular at y and

satisfies

oðuþ wÞðyÞ ¼ ouðyÞ þ owðyÞ:

Let Y� denote the set of solutions to P. Let distðy; Y�Þ ¼ infy�2Y� ky� y�k, where
k � k denotes the Euclidean norm. We may assume that the price space Y for P is a

compact subset in Rd
þ.

A large class of exchange economies for selling indivisible goods can be

modeled by P, including the assignment problem and an exchange economy with

indivisible goods (see, e.g., Bikhchandani and Mamer 1997) typified by the job

matching model of Kelso and Crawford (1982). Let Dj denote the demand curve for

buyer j 2 J and Si the supply curve for seller i 2 I. Then, for a large class of

quasilinear economies, we have �coDjðyÞ ¼ �ogjðyÞ and �coSiðyÞ ¼ ofiðyÞ for all

y 2 Y , where �coA denotes the closed convex hull of A (see Ma and Nie 2003).

For an economy given in P, the following holds

0 2
X

i2I
�coSiðyÞ �

X

j2J
�coDjðyÞ

for all y 2 Y�, since 0 2
Pm

i¼1 ofiðyÞ þ
Pn

j¼1 ogjðyÞ for all y 2 Y�. For a class of

exchange economies for selling indivisible goods typified by the job matching

model of Kelso and Crawford (1982) with the gross substitutes condition, the fol-

lowing equality holds

0 2
X

i2I
SiðyÞ �

X

j2J
DjðyÞ

for all y 2 Y�. Thus, Y� is the set of Walrasian equilibrium prices. For this reason,

we also say a solution to P a Walrasian equilibrium.

Recall a� ¼ 1
r

Pr
h¼1 ah. Then Y� ¼ Y�ða�; kÞ for kð1� a�Þ ¼ a�. However, if the

equality kð1� a�Þ ¼ a� does not hold, Y� may be different from Y�ða�; kÞ.
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5 Markovian a-double auctions

Let xk be the price vector at time k, a vector of prices of the executed trade at time k.

After observing the price vector xk, a pair of seller and buyer ðwk;w
0
kÞ 2 I 	 J is

drawn according to some rule, specified in Sect. 3, to submit an ask order and a bid

order to determine xkþ1 of the next trade.

An ask order for seller wk consists of a vector of ask prices wwk ;kþ1 and an ask

size ð5fwk
ðxkÞ þ �wk ;kÞ, where 5fiðxkÞ is the subgradient in ofiðxkÞ. The ask size is a

vector of true quantities supplied 5fwk
ðxkÞ plus a vector of stochastic noises �wk ;k

since fwk
is known only partially to the seller wk. The relationship between his ask

prices and sizes is given by

wwk ;kþ1 ¼ xk � akð5fwk
ðxkÞ þ �wk ;kÞ; ð5:1Þ

where ak is the ask step size. ak is a time-varying price decrement for selling one

unit (share). Individual selling puts a pressure for prices to move down. Moreover,

the more the seller wants to sell the more will the prices move down.

Similarly, a bid order for buyer w0
k consists of a vector of bid prices uw0

k
;kþ1 and a

vector of bid sizes ð5gw0
k
ðxkÞ þ �w0

k
;kÞ, where 5gw0

k
ðxkÞ is the subgradient in

ogw0
k
ðxkÞ and �w0

k
;k is stochastic noises. The relationship between her bid prices and

sizes is given by

uw0
k
;kþ1 ¼ xk � bk 5gw0

k
ðxkÞ þ dw0

k
;k

� �
; ð5:2Þ

where bk is the bid step size. bk is a time-varying price increment for buying one

unit (share). Individual buying puts a pressure for prices to move up. Moreover, the

more the buyer wants to buy the more will the prices move up.

The prices of the next executed trade xkþ1 are a weighted average of ask and bid

prices:

xkþ1 ¼ PY aw00
k
wkþ1 þ 1� aw00

k

� �
ukþ1

� �
: ð5:3Þ

Here PY is the Euclidean projection onto Y. wk, w
0
k and w00

k are respectively updating

in time according to time non-homogeneous Markov chains with states

f1; 2; . . .;mg, f1; 2; . . .; ng and f1; 2; . . .; rg, which satisfy Assumption 3.1. The

auction from (5.1)–(5.3) follows that of Xu et al. (2014) with an exception that a is

no longer fixed. Instead, it is a random variable governed by PRðkÞ. This is a

response to a question raised in Xu et al. (2014) that asks what will happen if a is at

random, following some stochastic processes.

We can also write (5.1) and (5.2) in terms of demand and supply

wkþ1 ¼ xk � ak Swk
ðxkÞ þ �wk ;k

� �
;

ukþ1 ¼ xk þ bk Dw0
k
ðxkÞ � dw0

k
;k

� �
;

where Swk
ðxkÞ 2 �coSwk

ðxkÞ ¼ ofwk
ðxkÞ and Dw0

k
ðxkÞ 2 �coDw0

k
ðxkÞ ¼ �ogw0

k
ðxkÞ. In

fact, Swk
ðxkÞ and Dw0

k
ðxkÞ can be chosen without taking the closed convex hull when
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the traded goods are indivisible. This goes back to the familiar form given in (2.2) in

the introduction because bid size equals Dw0
k
ðxkÞ plus some noise while ask size

equals Swk
ðxkÞ plus some noise. We call this a-double auction on two Markovian

networks a-MCDA. The sequence fxkg is called a Markovian price process.

An a-MCDA may be explained as follows. For the sale of a single stock with

price xk, starting at l� 0 such that l\k, a seller is drawn from the sellers’ network

according to the transition matrix UIðk; lÞ and a buyer is drawn from the buyers’

network according to the transition matrix UJðk; lÞ. The ask price equals the price xk
minus a linear increment of the number of shares for sale by the drawn seller and the

bid price equals the price xk plus a linear increment of the number of shares for

purchase by the drawn buyer. The new updated price xkþ1 is a weighted average of

the new bid and ask prices, with weight that is drawn according to the transition

matrix URðk; lÞ. Moreover, the number of shares for sale and purchase may include

stochastic noise variables. It is possible that the new updated price may be negative.

In that case, by setting Y priorly to be a closed interval with a positive lower end

price, any negative price will be replaced by the positive lower end of Y.

Since Y is compact, g is continuous, there exist scalars C, D and M such that

khk�C; 8h 2 ofiðxkÞ; 8i 2 I; k ¼ 0; 1; 2; . . .; ð5:4Þ

k‘k�D; 8‘ 2 ogjðxkÞ; 8j 2 J; k ¼ 0; 1; 2; . . .; ð5:5Þ

and

jgðyÞj �M; 8y 2 Y : ð5:6Þ

6 A simulation result

The following example has been studied in Xu et al. (2014). Now we use this

example to illustrate how a time-varying a-double auction operates. The three

sellers and five buyers have no knowledge at all where the Walrasian equilibrium

locates. Neither do they know total demand and supply. Each of them submits the

bid and ask orders based on self interest. It is the auction that integrates ‘‘dispersed

bits of incomplete information’’ (Hayek 1945) into prices. This example demon-

strates that a time-varying a-double auction can indeed reach the equilibrium of the

original economy. However, this conclusion is based on a perfect scenario because

it depends on key conditions on a and k.
There are three sellers, i ¼ 1; 2; 3, with each seller i ¼ 1; 2; 3 an initial endowment

of ðiþ 1Þ units of an identical (divisible) good. There are five buyers j ¼ 1; 2; . . .; 5,
each buyer j’s consumer’s surplus or profit function gj: Rþ ! R is obtained from

gjðyÞ ¼ max
q� 0

ujðqÞ � qy;

where uj: ½0;1Þ!Rþ is j’s utility function given by ujðqÞ¼ ðjþ1Þþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ1Þq

p
.

The supply curve for each seller is SiðyÞ¼ ½0; iþ1� for y¼ 0 and SiðyÞ¼ iþ1 for
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y[0, i¼ 1;2;3. The demand curve DjðyÞ¼ q�j , where u0iðq�j Þ¼ y for y
 0,

j¼ 1;2; . . .;5. In this example, we can set fiðyÞ¼ ðiþ1Þy for i2 I¼f1;2;3g and

gjðyÞ¼ ðjþ1Þþ jþ1
y

for j2 J¼f1;2; . . .;5g so that DjðyÞ¼ q�j ¼
jþ1
y2
. Thus, the equi-

librium price equals y� ¼
ffiffiffiffi
20
9

q
¼ 1:49.

The network structures of J and I and the transition probabilities are shown in

Fig. 2. We set R ¼ f0:2; 0:5; 0:8g and PRðkÞ ¼ PIðkÞ for all k. Thus, a� ¼ 0:5.

The two step sizes fakg and fbkg satisfy ak ¼ 1
kþ1

and bk ¼ k 5
3
ak. In the case with

noises, the Gauss noise (0, 25) is used for sellers and buyers, where 0 is the mean

of the noise term while 25 is the variance. We provide a simulation with and

without noises. The simulation results are shown in Fig. 3a–c for k ¼ 1. Figure 3c
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Fig. 3 Price process fxkg; x0 ¼ 3, total iterations = 50,000. Equilibrium price = 1.49. a Sample is from
1 to 100. b Sample is from 100 to 10,000. c Sample is from 10,000 to 50,000
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is the price charts near equilibrium or the limit of the price process and represents

two trading price charts for a period of 11.11 h, with one trade per second

(iteration). Theorem 7.1 shows that the price sequence fxkg converges to the

equilibrium price 1.49, with probability 1, because a� ¼ 0:5 and k ¼ 1. Note that

these price sequences are not necessarily unique since there are transition

probability matrices involved (see a robustness study with multiple rounds given

in Sect. 8.5).

Convergence of an a-double auction to a Walrasian equilibrium is very

subtle. When a is given, there is no positive scalar k such that the equality,

a ¼ kð1� aÞ, holds for either a ¼ 0 or 1. When a is time-varying as specified in

this study, there always exists a set of states R ¼ fahjh ¼ 1; 2; . . .; rg such that

0� a1\a2\ � � �\ar � 1 and the equality, a� ¼ kð1� a�Þ, holds for any positive

scalar k. This implies that a Markovian a-double auction has a major advantage

over an a-double auction with a fixed a for the market searching for an

equilibrium. This is especially important if the auction often executes trades near

the two end values a ¼ 1 and a ¼ 0. Our main finding in this paper is this new

a�.

7 Main results

In the following, letGk denote the entire history of the method up to time k � 1, i.e. the

r-field generated by the initial vector x0 and fwi;w
0
i;w

00
i ; �wi;i; dw0

i
;i; i ¼ 0;

1; . . .; k � 1g. We make the following assumption:

Assumptions 7.1 There exist deterministic scalar sequences flkg; fmkg; fskg and

frkg such that for k ¼ 1; 2; . . .,

jjE½�wk ;kjGk�jj � lk; jjE½dw0
k
;kjGk�jj � sk;

E½jj�wk ;kjj
2jGk� � m2k ; E½jjdw0

k
;kjj2jGk� � r2k :

Note that these noises are not necessarily Gaussian and they may persist all the

way with the evolution of the price process. We consider these noises in order to

capture the possibility buyers and sellers may have uncertainty about their true

demand and supply when they submit their bid and ask orders, respectively.

Different buyers and sellers may also have different degree of uncertainties about

their demand and supply, respectively.

Lemma 7.1 Let Assumptions 3.1 and 7.1 hold. Then the following inequality holds

for the a-MCDA iteration (5.1)–(5.2) for any step size rule, any y 2 Y and

k ¼ 0; 1; 2; . . .:
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E jjxkþ1 � yjj2 GdðkÞ
�
�

h i

�E jjxk � yjj2 GdðkÞ
�
�

h i
� 2a�ak

m
f ðxdðkÞÞ � f ðyÞ

� �
� 2ð1� a�Þbk

n
gðxdðkÞÞ � gðyÞ
� �

þ 2akrC bRb
kþ1�dðkÞ
R þmbIb

kþ1�dðkÞ
I

� ��

þ 2bkrD bRb
kþ1�dðkÞ
R þ nbJb

kþ1�dðkÞ
J

� ��
jjxdðkÞ � yjj

þ 2 akCþ bkDð Þ
Xk�1

‘¼dðkÞ
a‘ðCþ m‘Þ þ b‘ðDþ r‘Þð Þ þ akCþ akmk þ bkDþ bkrkð Þ2

þ 2aklk þ 2bkskð ÞE½jjxk � yjjjGdðkÞ�; ð7:1Þ

where fdðkÞg is any non-negative integer sequence with dðkÞ� k.

Proof See the ‘‘Appendix’’. h

Remark Lemma 7.1 plays a key role for proving our main results in Theorem 7.1

below. It shows that the quadratic distance of the price process to the equilibrium

can be bounded and it is possible for the price process to get closer and closer to the

equilibrium. Interestingly, the equilibrium point y chosen cannot be a solution in Y�.
Instead, it must be in Y�ða�; kÞ, as shown in Theorem 7.1.

Now we can prove our main results.

Theorem 7.1 Let Assumptions 3.1 and 7.1 hold. Assume that the step sizes are of

the forms

ak ¼
A

ðk þ 1Þp ; bk ¼
B

ðk þ 1Þq

with A, B positive scalars, 2
3
\p� 1 and 2

3
\q� 1, that there exists some positive k

with
X1

k¼0

bk

n
� k

ak

m

�
�
�
�

�
�
�
�\þ1 ð7:2Þ

and that the following estimates hold:

X1

k¼0

aklk\1;
X1

k¼0

bksk\1; sup
k� 0

mk\1; sup
k� 0

rk\1: ð7:3Þ

Then the following results hold with probability 1 for the sequence fxkg generated

by a-MCDA algorithm (5.1), (5.2):

lim inf
k!1

Fðxk; a�; kÞ ¼ F�ða�; kÞ; lim inf
k!1

dist xk; Y
�ða�; kÞð Þ ¼ 0: ð7:4Þ

Further more, we have

lim
k!1

E½distðxk; Y�ða�; kÞÞ2� ¼ 0: ð7:5Þ
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Proof See the ‘‘Appendix’’. h

Remark The two step sizes follow Ram et al. (2009) because we need to use their

result for
P1

k¼2 gk\1 in the proof in the ‘‘Appendix’’. The supermartingale

convergence theorem in Lemma 1 in Bertsekas and Tsitsiklis (2000) plays a critical

role in our proof. Without condition (7.2), we cannot use this theorem because
2a�ak
m

ðE½f ðxdðkÞÞ� � f ðy�ÞÞ þ 2ð1�a�Þbk
n

ðE½gðxdðkÞÞ� � gðy�ÞÞ that appears in inequality

(10.9) in the proof of Theorem 7.1 may not be nonnegative. There is no such a

problem if a single sequence of step sizes is used as in the incremental subgradient

methods (Nedić and Bertsekas 2001; Ram et al. 2009).

Assumptions 7.1 and (7.3) follow Ram et al. (2009) again. Note that lk and sk
cannot be set at nonzero constants for all k. Nonetheless, they may be very large,

positive or negative, for any finite number of k. Moreover, lk and sk should be

‘‘small’’ but need not to be zero. Their variances can be large and set at constants as

long as they are bounded. These conditions say that buyers or sellers may never

place orders that are on their true demand or supply curves but the errors on the

average should remain small.

Under the incremental subgradient method in Nedić and Bertsekas (2001) and

Ram et al. (2009), the price processes always converge to a solution in Y� for the

diminishing step size rule. Our results in Theorem 7.1 show that such a result is no

longer true, because Y� may be very different from Y�ða�; kÞ. Xu et al. (2014)

provided similar results in Theorem 7.1 for a fixed a 2 ½0; 1�. When a follows a

Markovian chain governed by Assumption 3.1, we need to replace the fixed a with

the average a� (firstly defined in the abstract).

Finally, we would like to point out that k may not exist to satisfy condition (7.2)

for some diminishing step sizes ak and bk given in Theorem 7.1. But, if it exists, it

must be unique. Moreover, if the limit bk
ak
exists, then k ¼ m

n
limk!1

bk
ak
. Even if the

limit bk
ak
does not exist, there may exist k to satisfy condition (7.2). Such a k satisfies

the condition m
n
lim infk!1

bk
ak
\k\ m

n
lim supk!1

bk
ak
. These points have been dis-

cussed in detail in Ma and Li (2011).

Since Y�ða�; kÞ ¼ Y� for a� ¼ kð1� a�Þ, it follows from (7.5) that the price

process fxkg converges in probability to the set of Walrasian equilibria of the

original economy when a� ¼ kð1� a�Þ. If, in addition, Y� is a singleton, then the

price process fxkg converges in probability 1 to the Walrasian equilibrium of the

original economy.

8 Discussions

The first part of the discussions is about the important role of equilibrium for the

convergence of the Markovian a-double auction in Theorem 7.1. The second part

focuses on the issue of investment sentiments. The third part considers the case

where the condition on k does not satisfy. We use the example in Sect. 6 and
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demonstrate that Theorem 7.1 does not hold if the condition fails. The fourth

part explores two directions such that Assumption 3.1 may be relaxed for a. Our
results are numerical in nature and instructional for theoretical researches in the

future.

8.1 Gravitation of equilibrium

Smith (1776) clearly stated that there is a natural price for every commodity and the

natural price of a commodity should be equal to its equilibrium price:

When the quantity brought to market is just sufficient to supply the effectual

demand and no more, the market price naturally comes to be either exactly, or

as nearly as can be judged of, the same with the natural price. (Smith 1776,

Book I.7.11)

Moreover, he predicted what may happen if the market price is not at the natural

price:

The natural price, therefore, is, as it were, the central price, to which the prices

of all commodities are continually gravitating. Different accidents may

sometimes keep them suspended a good deal above it, and sometimes force

them down even somewhat below it. But whatever may be the obstacles which

hinder them from settling in this center of repose and continuance, they are

constantly tending towards it. (Smith 1776, Book I.7.15)

By following Adam Smith’s idea of the natural price of a trading asset, we come

up with a simple, but familiar, model

P�
t ¼ Pt þ �t

where P�
t is the natural price of an asset at time t or the equilibrium price of an

underlying economy. Pt is the market or trading price under the clearinghouse of an

exchange. The reason we need a clearinghouse to find the natural price of an asset is

that the effectual demand or supply for an asset is unknown. Each individual on the

demand or supply side may know some private information about the asset but she

is unlikely to know the total or effectual demand or supply. A clearinghouse is

designed to find P�
t via Pt. According to Adam Smith, the noise term �t must have

mean zero and contain no information about P�
t .

If P�
t is seen as the natural price of an asset, it is still not easy to test if the

efficient markets hypothesis is true because P�
t must be modeled right in order to

test the random walk theory (Fama 1965, 1991). In our study of an exchange

economy, we may define the natural price of an asset to be the equilibrium price

as defined in problem P. Then, we can study the convergence of the price process

Pt (in vectors for multiple assets). That is an advantage in the study of the double

auctions in this paper because it bypasses the joint hypothesis problem articulated

in Fama (1991).

Our main theorems show that a Markovian a-double auction can indeed find this

natural price P�
t , with probability 1, for an asset in a class of exchange economies.
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An immediate warning is that such a conclusion puts a restrictive condition on the

two parameters a� and k. Because the condition may not be satisfied in practice, the

market price Pt may deviate from P�
t to form bubbles and crashes.3

In practice, if P�
t is seen as the present value of ex post dividends discounted with

a constant discount rate, Pt may deviate from P�
t in the form of excess volatility

discovered by Shiller (1981) and LeRoy and Porter (1981). Our main results also

provide conditions on how Pt may deviate from P�
t for a sustainable period under a

Markovian a-double auction. The condition to create bubbles or crashes is the

equality, a� ¼ kð1� a�Þ, does not hold. If this condition is not satisfied for a

sustainable period, the price process fPtg still converges, but it may not converge to

P�
t . Thus, our results show that a double auction as a clearinghouse may contribute

to the excess volatility. Bubbles and crashes are also observed in experimental

double auctions for selling assets (see, e.g., Smith et al. 1988), but these bubbles or

crashes can just last for a short period due to time and space limitations or budget

concerns in experiments.

Hayek (1945) raised a closely related question as Smith (1776) did on how a

general price mechanism in a laissez-faire economy finds the natural price of a

commodity or an asset. von Hayek focused more on the information integration. He

wonders how individual participants act solely in their self-interests without any

guidance from a central authority in a marketplace to integrate ‘‘dispersed bits of

incomplete information’’ correctly into the prices to find the natural prices of all

commodities. He utilized the word ‘‘marvel’’ to shock the reader for its significance

of the market mechanism and stated: ‘‘this mechanism would have been acclaimed

as one of the greatest triumphs of the human mind[� � �] [if] it were the result of

deliberate human design’’ (Hayek 1945, p. 527).

‘‘Dispersed bits of incomplete information’’ have been integrated into prices

through trading between sellers and buyers, one pair at a time, in a double auction

institution. The same question asked by von Hayek also applies to the double

auction mechanism. Our studies of this Markovian a-double auction make a small

step forward in answering his question. Extensive research must be done in order to

answer his question affirmatively and satisfactorily.

8.2 Sentiments matter

Theorem 7.1 requires the two step sizes ak ¼ A
ðkþ1Þp and bk ¼ B

ðkþ1Þq satisfy the

conditions 2
3
\p; q� 1. Because step sizes ak is the price decrement per unit by the

seller in the ask and bk is the price increment per unit by the buyer in the bid, the

two scalars A and B provide two measures for how aggressively the sellers and the

buyers place their orders. Therefore, sentiments such as fear and greed may also be a

factor in A and B.

3 Bubbles and crashes in economics and finance are the price movements of an asset that are not

supported by its fundamentals. Changes in fundamentals that result in higher or lower prices are not seen

as bubbles or crashes. But sentiments that over or under-react to the news in fundamentals can lead to a

formation of a bubble and a crash.
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The condition on k

X1

k¼0

bk

n
� k

ak

m

�
�
�
�

�
�
�
�\þ1 ð8:1Þ

in Theorem 7.1 implies that p ¼ q and

k ¼ m

n

B

A
: ð8:2Þ

To reach a Walrasian equilibrium for the Markovian a-double auction, Theorem 7.1

also shows that a� must satisfy

a� ¼ k
1þ k

: ð8:3Þ

In a well-functioning market, we may assume that m equals n. Then k ¼ B
A
. When

the market is neutral, neither bullish nor bearish, we expect that B ¼ A and then

k ¼ 1. Thus, a� ¼ 0:5. Under such a perfect scenario, Theorem 7.1 shows that the

Markovian a-double auction converges to a Walrasian equilibrium.

Now consider what may occur when the market becomes more bullish or when

the greed dominates, we can expect that B[A and then k[ 1. In a bull market, we

should expect that executed trades are settled more often near the end side of the

bids. Therefore, a� should be biased4 towards to a value less than 0.5, but this will

upset Eq. (8.3). Thus, we can conclude that the Markovian a-double auction will

converge to a price that is above its equilibrium price for a stock when the sentiment

for it is bullish. Note that such a change in the sentiment does not cause any change

in fundamentals because all fi and gj stay exactly the same. Why does sentiment

matter? It is because the two parameters a� and k affect P�
t . In our example in

Sect. 6, Pt converges to
ffiffiffiffiffiffiffiffiffiffiffi
k 1�a�

a�

q
P� not P� under the Markovian a-double auction.

The gravitation of the equilibrium of Smith (1776) still works but the natural price

has been distorted in the process of searching for it.

To see the importance of a� ¼ kð1� a�Þ, we let R ¼ f0:1; 0:2; 0:3g, a ‘‘bull’’

market with a� ¼ 0:2, and R ¼ f0:7; 0:8; 0:9g, a ‘‘bear’’ market with a� ¼ 0:8. Then
we conduct simulations with the example in Sect. 6, with the same PRðkÞ, k ¼
0; 1; 2; . . .; and step sizes. We also let k ¼ 1 and the noises are still Gauss noises (0,

25). For the case with a� ¼ 0:2, our price process should converge to the new

equilibrium
ffiffiffi
4

p
	 1:49, 100% higher than 1.49; and for the case with a� ¼ 0:8, our

price process should converge to the new equilibrium 1ffiffi
4

p 	 1:49, 50% lower than

1.49. Figure 4a, b shows these simulation results and our two price processes

perform exactly as expected. Clearly, the asset is overvalued for the case a� ¼ 0:2

4 In practice, an execution of a trade is complicated. Given a quote (bid, ask) ¼ ð200; 201Þ for a stock in a
dealer’s market, the ask 201 is the best price available from the dealer to sell when a buyer places a

market order to buy and the bid 200 is the best offer available from the dealer to buy when a seller places

a market order to sell. The actual posted price may often lie within (200, 201). In a ‘‘bull’’ market for a

stock where its price goes up more often than down, the actual executed price is likely closer to the ask

price of the dealer.
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and undervalued for the case a� ¼ 0:8. An asset may be overvalued to an enormous

level. For example, if a� ¼ 0:01, then the price process will converge to 14.83,

about ten times as large as the original equilibrium price 1.49. This indicates that the

Markovian a-double auction may provide a useful workhorse to study the very issue

related to the excess volatility in Shiller (1981).
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Fig. 4 The price processes fxkg, with different a�; x0 ¼ 3, total iterations = 50,000. Sample is from
10,000 to 50,000. a Noises (0, 25). b Without noises
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8.3 Condition on k fails

What may occur if the condition on k in (7.2) fails to hold? To understand that case,

we set ak ¼ 1
kþ1

, bk ¼ k 10
3
ak, and k ¼ 1 in the example in Sect. 6, while PJðkÞ and

PIðkÞ are the same for k ¼ 0; 1; 2; . . .; given in Fig. 2. Thus, the only difference here
from the simulations in Sect. 6 is that the condition (7.2) on k[ 0 is no longer

satisfied. We also set a at 0.5. We conduct a simulation for 50,000 iterations and

find that the Markovian a-double auction converges to a price near 2.11, with Gauss

noises (0, 25) and without noises. Because there is no convergence result available

in theory, the price limit is our reading from our simulation results and subject to

errors. The simulation results for sample from 10,000 to 50,000, with Gauss noises

(0, 25) and without noises, have been shown in Fig. 5. From Fig. 5, we observe that

the price process still converges, with probability 1, but it fails to converge to the

equilibrium 1.49. The limit of the convergence is about 42 % higher than the

equilibrium price 1.49. We do not have an explanation for the forces that lead to

such a bubble. The sentiment argument above may provide a good explanation but

the theorems there depend on the condition on k to be satisfied. Interestingly, the

price chart in Fig. 5 near the limit, once again, resembles amazingly the daily

trading charts in a real stock market.

Our simulation here reveals that even if the equality, a� ¼ kð1� a�Þ, holds, a
failure of condition (7.2) can also result in a deviation from the equilibrium under

the Markovian a-double auction, a case upsetting what had been predicted by Smith

(1776) about the gravitation of equilibrium.

8.4 Alternative conditions on a

In Sect. 3, there are two key assumptions on the a network about R. Assumption 3.1

requires that the transition probability matrix PRðkÞ be doubly stochastic and the a
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Fig. 5 Price process fxkg; x0 ¼ 3, total iterations = 50,000. Sample is from 10,000 to 50,000.
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network be strongly connected. We now use the example in Sect. 6 to do two

simulations and these simulation results show that these two conditions may be

relaxed. In the first simulation, we let R ¼ f0:2; 0:5; 0:8g, and the corresponding

transition probability matrix is given by

PRðkÞ ¼
0:7 0 0:3

0 1 0

0:3 0 0:7

0

B
@

1

C
A

for all k. The step sizes are given by

ak ¼
1

k þ 1
bk ¼

5kak
3

with k ¼ 1. In the case with noises, we still add Gauss noises with mean and

variance (0, 25). The only difference here from Fig. 3 is a change in PRðkÞ, which
violates the strongly connection assumption in Sect. 3 (see Assumption 4 in Ram

et al. 2009). The simulation results with and without noises are shown in Fig. 6. It

appears that the two price charts converge, with probability 1, to the equilibrium

1.49. Of course, this convergence result is based on simulations, without a general

result in theory. However, the two simulations do provide a direction how the

strongly connection condition on R may be relaxed.

Another possible direction to extend Theorem 7.1 is to consider absorbing

Markovian chains on R. In the next simulation, we also let R ¼ f0:5; 0:2; 0:8g, but
the corresponding transition probability matrix is changed to

PRðkÞ ¼
1 0 0

0:1 0:3 0:6

0:2 0:6 0:2

0

B
@
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C
A
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Fig. 6 Price process fxkg; x0 ¼ 3, total iterations = 50,000. Sample is from 10,000 to 50,000.
Equilibrium price = 1.49
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for all k, which violates the doubly stochastic condition in Assumption 3.1. The step

sizes remain the same as above. We also set k ¼ 1 and Gauss noises (0, 25) are used

in the case with noises. Our simulation results are shown in Fig. 7. The two price

processes suggest that they still converge, with probability 1, when a ¼ 0:5 is the

absorbing state. But the convergence to equilibrium must be proved in theory to be

conclusive for a claim if our results can be extended to Markovian chains with an

absorbing state. It is also interesting to consider a general case where a is a random

variable or follows a Brownian motion process.

8.5 Robustness

The excess volatility in Shiller (1981) shows that stock prices can substantially

deviate from its fundamental (equilibrium) value of discounted dividends (with a

constant discount factor). It is not easy to answer the question why there exists an

excess volatility in a stock or a stock index. Our main theorem (Theorem 7.1) shows

that a double auction, as a clearinghouse for stocks traded in an exchange, may

contribute to the excess volatility. We have used a number of experiments to

demonstrate that claim, see, e.g., Fig. 4a, b, where our experiments are done for one

single round and the initial point x0 is fixed at 3. This raises a question how robust

our experiments may be, as pointed out by a referee. Next we answer this question

by running several additional experiments with multiple rounds. At each round, we

select the initial point x0 uniformly from [1, 5] and conduct 20,000 iterations. We

use the same example in Sect. 6 for various numbers of sellers and buyers, by

setting n ¼ 5; 10; 20 and m ¼ 5; 10; 20, with and without noises. In that example, we
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Fig. 7 Price process fxkg; x0 ¼ 3, total iterations = 50,000. Sample is from 10,000 to 50,000.
Equilibrium price = 1.49

X. Xu et al.

123

Author's personal copy



know that the set of equilibrium prices Y� is a singleton consisting of
ffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ3Þ
mðmþ3Þ

q
. But

according to our Theorem 7.1, the price process fxkg converges in probability 1 to

the set of equilibrium prices Y�ða�; kÞ, also a singleton with

ffiffiffiffiffiffiffiffiffiffiffiffi
kð1�a�Þ

a�

q ffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ3Þ
mðmþ3Þ

q
. This

implies that the price process fxkg converges to the equilibrium price in Y� when
ffiffiffiffiffiffiffiffiffiffiffiffi
kð1�a�Þ

a�

q
¼ 1, a bubble price (higher than the equilibrium one) when

ffiffiffiffiffiffiffiffiffiffiffiffi
kð1�a�Þ

a�

q
[ 1,

and a crash price (lower than the equilibrium one) when

ffiffiffiffiffiffiffiffiffiffiffiffi
kð1�a�Þ

a�

q
\1. Our multiple

round experiments confirm these results, implied by our theorem. We have

conducted 18 additional experiments and 100 rounds for each experiment. We also

let Y ¼ ½0:01; 10�. We will report the average results of the 100 rounds of each

experiment in two tables and a number of figures. Tables 1 and 2 are below. The

detail of these experiments and the figures are in ‘‘Experiments for Sect. 8.5’’

section of Appendix. The 100 round experimental data for each case are available

upon request.

Tables 1 and 2 provide some useful statistics of these experiments. In the two

tables, Y� is the equilibrium price of the original economy. The price process fxkg
converges to Y�ða�; 1Þ with probability 1, according to Theorem 7.1, depending on

the average value of the weight a�. Thus, a change in the average a� affects the

convergence of the price process fxkg of an a-double auction. These experiments

provide solid evidence for our claim that a double auction implemented in a real

exchange market may indeed contribute to the excess volatility.

9 Conclusions

This paper studies an a-double auction under which buyers and sellers form two

time non-homogeneous Markovian chains with transition probability matrices

specified in Ram et al. (2009) and Xu et al. (2014), with a evolving with time in a

way governed by a time non-homogeneous Markovian chain as well. As in Xu et al.

(2014), we find that the parameter k, which may be seen as a measure for how

aggressively buyers and sellers submit their bids and asks, plays an important role

for the convergence of a Markovian a-double auction. For a large class of exchange
economies with multiple indivisible goods (e.g., Bikhchandani and Mamer 1997,

among others), typified by Kelso and Crawford’s (1982) many-to-one job matching

market with the gross substitutes condition, we provide conditions so that the price

process generated by the Markovian a-double auction converges to the set of

Walrasian equilibria of the original economy.

According to Smith (1776), an asset’s price must be determined by its

fundamental or natural price. The problem is that individual demands and supplies

for an asset are privately known and information about them is dispersed and

incomplete (Hayek 1945) to individuals. Under such a circumstance, majority real
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exchange markets across the world use a version of double auctions to discover the

equilibrium price of an asset. Such an auction is not perfect because a price process

under a double auction may converge to a price that is below or above the

equilibrium price. Nonetheless, we also show that under certain reasonable

conditions on the step sizes, the a-double auction can indeed find the equilibrium

price, with contaminated individual demands and supplies.

We also provide a number of simulations. Our simulation results of a simple

exchange economy with a single divisible good demonstrate that the price process

of the Markovian a-double auction near equilibrium is very similar to a price

process in a real exchange market. This provides evidence that the Markovian a-
double auction may provide a useful framework for modeling a real exchange

market. In particular, it may be used to study the excess volatility in the equity

market. Indeed, our simulations provide examples to show that there are other forces

beyond the equilibrium, in a market using double auctions, that can keep the price of

an asset away from its natural or equilibrium price (see Tables 1, 2).

Our work follows the literature of incremental subgradient methods, widely used

in a large scale of distributional computation, see Kibardin (1980), Bertsekas

(2010), Nedić and Bertsekas (2001), and Ram et al. (2009), among others. Our

Markovian a-double auction inherits that nice feature. It can apply to a market with

a large number of buyers and sellers because each iteration of price updating in the

Markovian a-double auction just involves a pair of a single buyer and a single seller.
Information about the total demand or supply is not needed for its operation, a

useful feature for a large scale economy. Our simulation example is quite limited in

scale and it should be expanded to a very large scale. In particular, the number of

buyers and the number of sellers can both be randomly generated. Such a study of

the Markovian a-double auction will move in a leap step closer to a real exchange

market.
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Appendix: Proofs of Lemma 7.1 and Theorem 7.1

Proof of Lemma 7.1

Proof The proof is similar to that of Lemma 4.2 in Ram et al. (2009). In fact, from

the iteration (5.1)–(5.2), the ‘‘non-expansion’’ property of the Euclidean projection

and the definition of subgradient, we have
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Taking conditional expectations with respect to GdðkÞ, we get
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Now, we will estimate the second term to the seventh term in the second ‘‘� ’’ of

(10.2) respectively. For the second term , by the definition of subgradient, sub-

gradient boundedness (5.4) and the fact that aw00
k
2 ½0; 1�, we have
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�
�
� GdðkÞ
�
�

h i

� � C
Xk�1

‘¼dðkÞ
a‘ðC þ m‘Þ þ b‘ðDþ r‘Þð Þ:

ð10:3Þ

Similarly, we can obtain

E 1� aw00
k

� �
ðgw0

k
ðxkÞ � gw0

k
ðxdðkÞÞjGdðkÞÞ

h i
� � D

Xk�1

‘¼dðkÞ
a‘ðC þ m‘Þ þ b‘ðDþ r‘Þð Þ:

ð10:4Þ

As for the third term in the second ‘‘� ’’ of (10.2), noting that GdðkÞ denotes the entire

history of the method up to time dðkÞ � 1, and the probability transition matrices for

the Markov chains fwkg, fw00
kg from time dðkÞ � 1 to k are UIðk; dðkÞ � 1Þ and

URðk; dðkÞ � 1Þ respectively, we have

E aw00
k
fwk

ðxdðkÞÞ � fwk
ðyÞ

� �
jGdðkÞ

h i

¼
Xr

t¼1

Xm

i¼1

½URðk; dðkÞ � 1Þ�w00
dðkÞ;t

½UIðk; dðkÞ � 1Þ�wdðkÞ;i
at fiðxdðkÞÞ � fiðyÞ
� �

�
Xr

t¼1

½URðk; dðkÞ � 1Þ�w00
dðkÞ;t

at
Xm

i¼1

1

m
fiðxdðkÞÞ � fiðyÞ
� �

�
Xr

t¼1

½URðk; dðkÞ � 1Þ�w00
dðkÞ;t

at
Xm

i¼1

jUIðk; dðkÞ � 1Þ�wdðkÞ;i
� 1

m
jjfiðxdðkÞÞ � fiðyÞj

�
Xr

t¼1

½URðk; dðkÞ � 1Þ�w00
dðkÞ;t

at
Xm

i¼1

1

m
fiðxdðkÞÞ � fiðyÞ
� �

� r
Xm

i¼1

jUIðk; dðkÞ � 1Þ�wdðkÞ;i
� 1

m
jjfiðxdðkÞÞ � fiðyÞj

�
Xr

t¼1

1

r
þ ½URðk; dðkÞ � 1Þ�w00

dðkÞ;t
� 1

r


 �
 �
at
m

f ðxdðkÞÞ � f ðyÞ
� �

� rbIb
kþ1�dðkÞ
I mCjjxdðkÞ � yjj

� a�

m
f ðxdðkÞÞ � f ðyÞ

� �
� rC bRb

kþ1�dðkÞ
R þ mbIb

kþ1�dðkÞ
I

� �
jjxdðkÞ � yjj; ð10:5Þ

X. Xu et al.

123

Author's personal copy



where in the second ‘‘� ’’, we have used the fact that ½URðk; dðkÞ � 1Þ�w00
dðkÞ;t

� 1 and

at 2 ½0; 1�, in the third ‘‘� ’’, we have used (3.1), and in the last ‘‘� ’’, we have used

(3.3). Similarly, it holds

E 1� aw00
k

� �
gw0

k
ðxdðkÞÞ � gw0

k
ðyÞ

� �
jGdðkÞ

h i

� 1� a�

n
gðxdðkÞÞ � gðyÞ
� �

� rD bRb
kþ1�dðkÞ
R þ nbJb

kþ1�dðkÞ
J

� �
jjxdðkÞ � yjj:

ð10:6Þ

For the sixth term in the second ‘‘� ’’ of (10.2), from Assumption 7.1, the

boundedness (5.4)–(5.5) and the fact that aw00
k
2 ½0; 1�, it follows

E aw00
k
ak 5 fwk

ðxkÞ þ aw00
k
ak�wk ;k þ 1� aw00

k

� �
bk 5 gw0

k
ðxkÞ þ 1� aw00

k

� �
bkdw0

k
;k

� �2

GdðkÞ
�
�

� 	

� akC þ akmk þ bkDþ bkrkð Þ2:
ð10:7Þ

As for the last term in the second ‘‘� ’’ of (10.2), since GdðkÞ � Gk, it holds

E 2aw00
k
akðxk � yÞT�wk ;k þ 2 1� aw00

k

� �
bkðxk � yÞTdw0

k
;k

� �
GdðkÞ
�
�

h i

¼ E E 2aakðxk � yÞT�wk ;k þ 2 1� aw00
k

� �
bkðxk � yÞTdw0

k
;k

� �
jGk

h i
GdðkÞ
�
�

h i

¼ E ðxk � yÞTE 2aw00
k
ak�wk ;k þ 2 1� aw00

k

� �
bkdw0

k
;k

� �
jGk

h i
GdðkÞ
�
�

h i

� � E jjxk � yjj jjE½2ak�wk ;kjGk�jj þ jjE½2bkdw0
k
;kjGk�jj

� �
GdðkÞ
�
�

h i

� �2aklk � 2bkskð ÞE jjxk � yjj GdðkÞ
�
�

� 

: ð10:8Þ

Substituting the preceding estimates (10.3)–(10.8) into (10.2) yields the desired

estimate (7.1). h

Proof of Theorem 7.1

Proof Since Y is compact, f, g is convex functions, it follows that Y�ða�; kÞ is

nonempty, closed and convex. By Lemma 7.1, we obtain that for any y� 2 Y�ða�; kÞ

E½distðxkþ1;Y
�ða�; kÞÞ2jGdðkÞ� �E½distðxk;Y�ða�; kÞÞ2jGdðkÞ�

� 2a�ak
m

f ðxdðkÞÞ � f ðy�Þ
� �

� 2ð1� a�Þbk
n

gðxdðkÞÞ � gðy�Þ
� �

þ 2akrC bRb
kþ1�dðkÞ
R þ mbIb

kþ1�dðkÞ
I

� �
þ 2bkrD bRb

kþ1�dðkÞ
R þ nbJb

kþ1�dðkÞ
J

� �� �

	max
x;y2Y

jjx� yjj þ 2 akC þ bkDð Þ
Xk�1

‘¼dðkÞ
a‘ðC þ m‘Þ þ b‘ðDþ r‘Þð Þ

þ akC þ akmk þ bkDþ bkrkð Þ2þ 2aklk þ 2bkskð ÞE dist xk;Y
�ða�; kÞð Þ GdðkÞ

�
�

� 

:

ð10:9Þ
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Denote

gk :¼ 2akrC bRb
kþ1�dðkÞ
R þ mbIb

kþ1�dðkÞ
I

� �
þ 2bkrD bRb

kþ1�dðkÞ
R þ nbJb

kþ1�dðkÞ
J

� �� �

	max
x;y2Y

jjx� yjj þ 2 akC þ bkDð Þ
Xk�1

‘¼dðkÞ
a‘ðC þ m‘Þ þ b‘ðDþ r‘Þð Þ

þ akC þ akmk þ bkDþ bkrkð Þ2þ 2aklk þ 2bkskð ÞE½distðxk;Y�ða�; kÞÞ�:

ð10:10Þ

Taking expectations to (10.9) yields

E dist xkþ1;Y
� a�; kð Þð Þ2

h i

�E dist xk;Y
� a�; kð Þð Þ2

h i
� 2a�ak

m
E f ðxdðkÞÞ
� 


� f ðy�Þ
� �

� 2 1� a�ð Þbk
n

E gðxdðkÞÞ
� 


� gðy�Þ
� �

þ gk

�E dist xk;Y
� a�; kð Þð Þ2

h i
� 2ak

m
E a�f þ k 1� a�ð Þgð ÞðxdðkÞÞ
� 
�

� a�f þ kð1� a�Þgð Þðy�ÞÞ þ 2ð1� a�Þ bk

n
� k

ak

m


 �

E g xdðkÞ
� �� 


� gðy�Þ
� �

þ gk

�E dist xk;Y
�ða�; kÞð Þ2

h i
� 2ak

m
E a�f þ kð1� a�Þgð ÞðxdðkÞÞ
� 
�

� a�f þ kð1� a�Þgð Þðy�ÞÞ þ 4M
bk

n
� k

ak

m

�
�
�
�

�
�
�
�þ gk:

Following the same routine as in the proof of Theorem 4.3 in Ram et al. (2009), we

easily know that for some non-negative integer sequence fdðkÞg, it holds
X1

k¼2

gk\1:

In addition, in view of (7.2), the inequality

E a�f þ kð1� a�Þgð ÞðxdðkÞÞ
� 


� a�f þ kð1� a�Þgð Þðy�Þ

and Lemma 1 in Bertsekas and Tsitsiklis (2000), we conclude that

E½distðxk;Y�ða�; kÞÞ2� converges to a non-negative scalar and

X1

k¼2

2ak

m
E a�f þ kð1� a�Þgð ÞðxdðkÞÞ
� 


� a�f þ kð1� a�Þgð Þðy�Þ
� �

\1; ð10:11Þ

which, together with the fact
P1

k¼2 ak ¼ 1 for 2
3
\p� 1, yields

lim inf
k!1

E a�f þ kð1� a�ÞgÞðxkð Þ½ � ¼ a�f þ kð1� a�Þgð Þðy�Þ: ð10:12Þ

Since f, g are continuous and Y is compact, from Fatou’s lemma it follows

E lim inf
k!1

a�f þ kð1� a�Þgð ÞðxkÞ
� 	

� lim inf
k!1

E a�f þ kð1� a�Þgð ÞðxkÞ½ �

¼ a�f þ kð1� a�Þgð Þðy�Þ;
ð10:13Þ
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which implies that

lim inf
k!1

a�f þ kð1� a�Þgð ÞðxkÞ ¼ a�f þ kð1� a�Þgð Þðy�Þ

with probability 1, i.e. the first result of (7.4) holds. Using again the continuity of

f, g and the compactness of Y, we know that

lim inf
k!1

dist xk;Y
�ða�; kÞð Þ ¼ 0

with probability 1, i.e. the second result of (7.4) holds.

Now we aim to prove (7.5). Since lim infk!1 dist xk;Y
�ða�; kÞð Þ ¼ 0 with

probability 1, there exists a subsequence of fdist xk;Y�ða�; kÞð Þ2g, which we denote

by fdist xk‘ ;Y�ða�; kÞð Þ2g, such that limk‘!1 dist xk‘ ;Y
�ða�; kÞð Þ2¼ 0 with proba-

bility 1. For the set Y is bounded, we know the sequence fdist xk‘ ;Y�ða�; kÞð Þ2g is

bounded. By the dominated convergence theorem, we have

lim
k‘!1

E dist xk‘ ;Y
�ða�; kÞð Þ2

h i
¼ E lim

k‘!1
dist xk‘ ;Y

�ða�; kÞð Þ2
� 	

¼ 0:

Since we already obtain that E½distðxk;Y�ða�; kÞÞ2� converges to a non-negative

scalar, then it has to converge to 0, i.e.

lim
k!1

E dist xk;Y
�ða�; kÞ2

�h i
¼ 0;

which completes the proof. h

Experiments for Sect. 8.5

The weight a follows a Markov chain in a state R ¼ fa1; a2; a3g and in all cases, the

transition matrix for the Markov chain for a is given by, k ¼ 0; 1; 2; . . .,

PRðkÞ ¼
2=3 1=3 0

1=3 1=3 1=3

0 1=3 2=3

0

B
@

1

C
A;

which equals PI in Fig. 2. We let k ¼ 1. The two step sizes are given by

ak ¼
1

k þ 1
and bk ¼

kn
m

ak

so that the k condition (7.2) is satisfied. In the situations with noises, we add the

Gauss noises with mean and variance (0, 25), as before.

Experiment 1 m ¼ 5; n ¼ 5. The two transition matrices PIðkÞ and PJðkÞ are

given by, k ¼ 0; 1; 2; . . .;
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PIðkÞ ¼

4=5 1=5 0 0 0

1=5 3=5 1=5 0 0

0 1=5 3=5 1=5 0

0 0 1=5 3=5 1=5

0 0 0 1=5 4=5

0

B
B
B
B
B
@

1

C
C
C
C
C
A
;

PJðkÞ ¼

3=5 1=5 0 0 1=5

1=5 3=5 1=5 0 0

0 1=5 3=5 1=5 0

0 0 1=5 3=5 1=5

1=5 0 0 1=5 3=5

0

B
B
B
B
B
@

1

C
C
C
C
C
A

:

We let R ¼ f0:25; 0:5; 0:75g. Thus, a� ¼ 0:5 and Y� ¼ Y�ða�; kÞ ¼ f1g, since

k ¼ 1. Figure 8 reports the result, which shows that the price process fxkg con-

verges to the equilibrium price 1, with or without noises. Next we increase the

number of buyers from n ¼ 5 to n ¼ 10 while m remains at 5.

Experiment 2 m ¼ 5; n ¼ 10. The two transition matrices PIðkÞ and PJðkÞ are

given by, k ¼ 0; 1; 2; . . .,

PIðkÞ ¼

4=5 1=5 0 0 0

1=5 3=5 1=5 0 0

0 1=5 3=5 1=5 0

0 0 1=5 3=5 1=5

0 0 0 1=5 4=5

0

B
B
B
B
B
@

1

C
C
C
C
C
A

;

PJðkÞ ¼

8=10 1=10 1=10

1=10 8=10 . .
.

. .
. . .

. . .
.

. .
. . .

.
1=10

1=10 1=10 8=10

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A
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Fig. 8 Average fxkg of 100 samples for m ¼ 5 and n ¼ 5. x0 randomly generated in [1, 5] and iterations
from 1 to 20,000. Note: equilibrium price = 1 when a� ¼ 0:5
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We select two different states for as, R ¼ f0:25; 0:5; 0:75g and

R1 ¼ f0:25; 0:75; 1g, with different average weights a� ¼ 1
2
and a�1 ¼ 2

3
. Thus, Y� ¼

Y�ða�; kÞ ¼ f1:8028g and Y�ða�1; kÞ ¼ f1:2748g. Clearly, Y� 6¼ Y�ða�1; kÞ. Figure 9

presents the results, which confirm what has been shown in Theorem 7.1. Note that

the fundamentals remain the same. But the price process converges to the price

1.2748, purely due to a change in the average weight from a� to a�1. The interesting
part is that what matters is the average a�. This implies that if we change R1 to

R10 ¼ f0:1; 0:9; 1g, then our experiments will also converge to the same price

1.2748. Next we increase the number of buyers further from n ¼ 10 to n ¼ 20 while

m stays put at 5.

Experiment 3 m ¼ 5; n ¼ 20. The two transition matrices PIðkÞ and PJðkÞ are

given by, k ¼ 0; 1; 2; . . .;

PIðkÞ ¼

4=5 1=5 0 0 0

1=5 3=5 1=5 0 0

0 1=5 3=5 1=5 0

0 0 1=5 3=5 1=5

0 0 0 1=5 4=5

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

PJðkÞ ¼

18=20 1=20 1=20

1=20 18=20 . .
.

. .
. . .

. . .
.

. .
. . .

.
1=20

1=20 1=20 18=20

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A
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:
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Noise (0,25), alpha*=2/3
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Fig. 9 Average fxkg of 100 samples for m ¼ 5 and n ¼ 10. x0 randomly generated in [1, 5] and
iterations from 1 to 20,000. Note: equilibrium price = 1.8 when a� is 0.5. For a� ¼ 2=3, the process
converges to 1.27
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We also consider two different states R ¼ f0:25; 0:5; 0:75g and R2 ¼ f0:4; 0:8; 1g.
Then a� ¼ 0:5 and a�2 ¼ 2:2=3. So, Y� ¼ f3:3912g and Y�ða�2; kÞ ¼ f2:0449g.
Figure 10 presents the experimental results. Once again, with a higher average

weight a�2 than a�, the price process converges to a price that is substantially lower

than the equilibrium price of the original economy. Next we keep n ¼ 5 as in

Experiment 1 while increase the number of sellers from m ¼ 5 to m ¼ 10. One can

expect that the equilibrium price is lower than 1 because there are more sellers.

Experiment 4 m ¼ 10; n ¼ 5. The two transition matrices PIðkÞ and PJðkÞ are

given by, k ¼ 0; 1; 2; . . .,

PIðkÞ ¼

9=10 1=10

1=10 8=10 . .
.

. .
. . .

.
1=10

1=10 8=10 1=10

1=10 9=10

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

10	10

;

PJðkÞ ¼

3=5 1=5 0 0 1=5

1=5 3=5 1=5 0 0

0 1=5 3=5 1=5 0

0 0 1=5 3=5 1=5

1=5 0 0 1=5 3=5

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

We set R ¼ f0:25; 0:5; 0:75g and R3 ¼ f0; 0:25; 0:75g in our experiments. Thus,

a� ¼ 0:5 and a�3 ¼ 1
3
. So, Y� ¼ f0:5547g and Y�ða�3; kÞ ¼ f0:7845g. The experi-

mental results are reported in Fig. 11, which confirms our theoretical result in
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noise (0,25), alpha*=2.2/3

Fig. 10 Average fxkg of 100 samples for m ¼ 5 and n ¼ 20. x0 randomly generated in [1, 5] and
iterations from 1 to 20,000. Note: equilibrium = 3.39 for a� ¼ 0:5. For a� ¼ 2:2=3, the process converges
to 2.04
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Theorem 7.1. Note that when a� is lower from 1
2
to 1

3
, the price process converges to

a higher price 0.7845 than the equilibrium price 0.5547 of the original economy,

higher by more than 41 %. Next we increase the number of sellers from m ¼ 10 to

m ¼ 20. The equilibrium price in Y� will be even lower, as expected.

Experiment 5 m ¼ 20; n ¼ 5. The two transition matrices PIðkÞ and PJðkÞ are

given by, k ¼ 0; 1; 2; . . .,

PIðkÞ ¼

19=20 1=20

1=20 18=20 . .
.

. .
. . .

.
1=20

1=20 18=20 1=20

1=20 19=20

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

20	20

;

PJðkÞ ¼

3=5 1=5 0 0 1=5

1=5 3=5 1=5 0 0

0 1=5 3=5 1=5 0

0 0 1=5 3=5 1=5

1=5 0 0 1=5 3=5

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

We set R ¼ f0:25; 0:5; 0:75g and R4 ¼ f0; 0:2; 0:4g in our experiments. Thus, a� ¼
0:5 and a�4 ¼ 0:2. So, Y� ¼ f0:2949g and Y�ða�4; kÞ ¼ f0:5898g. The experimental

results are reported in Fig. 12. When the average weight a� moves lower from 0.5 to

0.2, the price process converges to a higher price 0.5898, which is twice as much as

the equilibrium price of the original economy because
ffiffiffiffiffiffiffiffiffiffiffiffi
kð1�a�

4
Þ

a�
4

q
¼ 2. In summary,

we have done 18 experiments each of which has shown how a change in a may

affect the convergence of the price process fxkg of an a-double auction. These
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Fig. 11 Average fxkg of 100 samples for m ¼ 10 and n ¼ 5. x0 randomly generated in [1, 5] and
iterations from 1 to 20,000. Note: equilibrium = 0.55 when a� equals 0.5 For a� ¼ 1=3, the process
converges to 0.78

Convergence of Markovian price processes in a financial…

123

Author's personal copy



experiments provide solid evidence a double auction implemented in a real

exchange market may indeed contribute to the excess volatility.

References

Bertsekas D (2009) Convex optimization theory. Athena Scientific, Belmont

Bertsekas D (2010) Incremental gradient, subgradient, and proximal methods for convex optimization: a

survey. Lab. for Information and Decision Systems ReportLIDS-P-2848, MIT. arXiv:1507.01030

Bertsekas D, Tsitsiklis J (2000) Gradient convergence in gradient methods with errors. SIAM J Optim

10:627–642

Bikhchandani S, Mamer JW (1997) Competitive equilibrium in an exchange economy with indivisi-

bilities. J Econ Theory 74:384–413

Chatterjee K, Samuelson W (1983) Bargaining under incomplete information. Oper Res 31:835–851

Clarke F, Ledyaev Y, Stern R, Wolenski P (1988) Nonsmooth analysis and control theory. Springer, New

York

Ellison G (1993) Learning, local interaction, and coordination. Econometrica 61:1047–1071

Fama EF (1965) Random walks in stock-market prices. Financ Anal J 51(1):55–59. doi:10.2469/faj.v21.

n5.55

Fama EF (1991) Efficient capital markets: II. J Finance 46(5):1575–1617

Hayek FA (1945) The use of knowledge in society. Am Econ Rev 35:519–530

Kelso AS, Crawford V (1982) Job matching, coalition formation and gross substitute. Econometrica

50:1483–1504

Kibardin VM (1980) Decomposition into functions in the minimization problem. Autom Remote Control

40(9):1311–1333

LeRoy SF, Porter RD (1981) The present-value relation: tests based on implied variance bounds.

Econometrica 49:555–574

Ma J, Nie F (2003) Walrasian equilibrium in an exchange economy with indivisibilities. Math Soc Sci

46:159–192

Ma J, Li Q (2011) Bubbles, crashes and efficiency with double auction mechanisms. ssrn2163435, Social

Science Research Network, SSRN.COM

Myerson RB, Satterthwaite (1983) Efficient mechanisms for bilateral trading. J Econ Theory 29:265–281

Nedić A, Bertsekas DP (2001) Incremental subgradient methods for nondifferentiable optimization.

SIAM J Optim 12:109–138

0

0.5

1

1.5

2

2.5

3

3.5

4
1

57
3

11
45

17
17

22
89

28
61

34
33

40
05

45
77

51
49

57
21

62
93

68
65

74
37

80
09

85
81

91
53

97
25

10
29

7
10

86
9

11
44

1
12

01
3

12
58

5
13

15
7

13
72

9
14

30
1

14
87

3
15

44
5

16
01

7
16

58
9

17
16

1
17

73
3

18
30

5
18

87
7

19
44

9

No noise, alpha*=0.2

Noise (0,25), alpha*=0.2

no noise, alpha*=0.5

noise (0,25), alpha*=0.5

Fig. 12 Average fxkg of 100 samples for m ¼ 20 and n ¼ 5. x0 randomly generated in [1, 5] and
iterations from 1 to 20,000. Note: equilibrium price = 0.29 for a� ¼ 0:5. For a� ¼ 1=5, the process
converges to 0.59

X. Xu et al.

123

Author's personal copy

http://arxiv.org/abs/1507.01030
http://dx.doi.org/10.2469/faj.v21.n5.55
http://dx.doi.org/10.2469/faj.v21.n5.55
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